Sound power and antilogarithm

Sound power and antilogarithm
  • An example of sound power and antilogarithm

To calculate the acoustic power (S&P, 2017; Nocetti, 2018) with a known level in decibels, the antilogarithm tool is used, in the video it is explained with a small example how to solve one of these problems.
The formal definition of a logarithm is: "Given a real number (argument x), the logarithm function assigns the exponent n (or power) to which a fixed number b (base) must be raised to obtain that argument. It is the inverse function of ba the power n. This function is written as: n = logb x, which allows to obtain n" (L贸pez, 2015) o n=logb x <=> x=b^n. An antilgarithm is the opposite, and allows us to find the exponent to which a base must be raised to obtain the result, this is very useful in acoustic power problems, since if the decibel level is known, it is enough to use the antilogarithm To clear the power.

References:

L贸pez, C. (2015). "Ejercicios de logaritmos". En unPROFESOR. Recuperado de https://www.unprofesor.com/matematicas/ejercicios-de-logaritmos-828.html

Nocetti, F.A. (2018). "Potencia ac煤stica". En NabbuBlog. Recuperado de http://nabbublog.blogspot.com/2018/10/potencia-acustica-sound-power.html

S&P. (2017). Potencia Ac煤stica (Lw) y Presi贸n Ac煤stica (Lp): ¿qu茅 diferencia hay?. Recuperado de https://www.solerpalau.com/es-es/blog/potencia-acustica-lw-presion-acustica-lp/

How to cite this article:

Nocetti, F.A. (2018). "Sound power and antilogarithm". In NabbuBlog. Retrieved from http://nabbublog.blogspot.com/2018/11/sound-power-and-antilogarithm.html

Random Post

Random Post

Ads

loading...

Seguidores